Doubly stochastic Yule cascades (Part I): The explosion problem in the time-reversible case

Motivated by the probabilistic methods for nonlinear differential equations introduced by McKean (1975) for the Kolmogorov-Petrovski-Piskunov (KPP) equation, and by Le Jan and Sznitman (1997) for the incompressible Navier-Stokes equations (NSE), we identify a new class of stochastic cascade models,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2023-01, Vol.284 (1), p.109722, Article 109722
Hauptverfasser: Dascaliuc, Radu, Pham, Tuan N., Thomann, Enrique, Waymire, Edward C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivated by the probabilistic methods for nonlinear differential equations introduced by McKean (1975) for the Kolmogorov-Petrovski-Piskunov (KPP) equation, and by Le Jan and Sznitman (1997) for the incompressible Navier-Stokes equations (NSE), we identify a new class of stochastic cascade models, referred to as doubly stochastic Yule cascades. We establish non-explosion criteria under the assumption that the randomization of Yule intensities from generation to generation is by an ergodic time-reversible Markov process. In addition to the cascade models that arise in the analysis of certain deterministic nonlinear differential equations, this model includes the multiplicative branching random walks, the branching Markov processes, and the stochastic generalizations of the percolation and/or cell ageing models introduced by Aldous and Shields (1988) and independently by Athreya (1985).
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2022.109722