Cutoff Boltzmann equation with polynomial perturbation near Maxwellian

In this paper, we consider the cutoff Boltzmann equation near Maxwellian, we proved the global existence and uniqueness for the cutoff Boltzmann equation in polynomial weighted space for all γ∈(−3,1]. We also proved initially polynomial decay for the large velocity in L2 space will induce polynomial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2022-11, Vol.283 (9), p.109641, Article 109641
1. Verfasser: Cao, Chuqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the cutoff Boltzmann equation near Maxwellian, we proved the global existence and uniqueness for the cutoff Boltzmann equation in polynomial weighted space for all γ∈(−3,1]. We also proved initially polynomial decay for the large velocity in L2 space will induce polynomial decay rate, while initially exponential decay will induce exponential rate for the convergence. Our proof is based on newly established inequalities for the cutoff Boltzmann equation and semigroup techniques. Moreover, by generalizing the Lx∞Lv1∩Lx,v∞ approach, we prove the global existence and uniqueness of a mild solution to the Boltzmann equation with bounded polynomial weighted Lx,v∞ norm under some small condition on the initial Lx1Lv∞ norm and entropy so that this initial data allows large amplitude oscillations.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2022.109641