Hardy's inequality and the isotropic Landau equation
In this manuscript we establish an L∞ estimate for the isotropic analogue of the homogeneous Landau equation. This is done for values of the interaction exponent γ in (a part of) the range of very soft potentials. The main observation in our proof is that the classical weighted Hardy inequality lead...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2022-09, Vol.283 (6), p.109559, Article 109559 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this manuscript we establish an L∞ estimate for the isotropic analogue of the homogeneous Landau equation. This is done for values of the interaction exponent γ in (a part of) the range of very soft potentials. The main observation in our proof is that the classical weighted Hardy inequality leads to a weighted Poincaré inequality, which in turn implies the propagation of some Lp norms of solutions. From here, the L∞ estimate follows from certain weighted Sobolev inequalities and De Giorgi-Nash-Moser theory. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/j.jfa.2022.109559 |