Hardy's inequality and the isotropic Landau equation

In this manuscript we establish an L∞ estimate for the isotropic analogue of the homogeneous Landau equation. This is done for values of the interaction exponent γ in (a part of) the range of very soft potentials. The main observation in our proof is that the classical weighted Hardy inequality lead...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2022-09, Vol.283 (6), p.109559, Article 109559
Hauptverfasser: Gualdani, Maria, Guillen, Nestor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this manuscript we establish an L∞ estimate for the isotropic analogue of the homogeneous Landau equation. This is done for values of the interaction exponent γ in (a part of) the range of very soft potentials. The main observation in our proof is that the classical weighted Hardy inequality leads to a weighted Poincaré inequality, which in turn implies the propagation of some Lp norms of solutions. From here, the L∞ estimate follows from certain weighted Sobolev inequalities and De Giorgi-Nash-Moser theory.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2022.109559