Enhanced dissipation and Hörmander's hypoellipticity
We examine the phenomenon of enhanced dissipation from the perspective of Hörmander's classical theory of second order hypoelliptic operators [33]. Consider a passive scalar in a shear flow, whose evolution is described by the advection–diffusion equation∂tf+b(y)∂xf−νΔf=0 on T×(0,1)×R+ with per...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2022-08, Vol.283 (3), p.109522, Article 109522 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We examine the phenomenon of enhanced dissipation from the perspective of Hörmander's classical theory of second order hypoelliptic operators [33]. Consider a passive scalar in a shear flow, whose evolution is described by the advection–diffusion equation∂tf+b(y)∂xf−νΔf=0 on T×(0,1)×R+ with periodic, Dirichlet, or Neumann conditions in y. We demonstrate that decay is enhanced on the timescale T∼ν−(N+1)/(N+3), where N is the maximal order of vanishing of the derivative b′(y) of the shear profile and N=0 for monotone shear flows. In the periodic setting, we recover the known timescale of Bedrossian and Coti Zelati [8]. Our results are new in the presence of boundaries. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/j.jfa.2022.109522 |