Enhanced dissipation and Hörmander's hypoellipticity

We examine the phenomenon of enhanced dissipation from the perspective of Hörmander's classical theory of second order hypoelliptic operators [33]. Consider a passive scalar in a shear flow, whose evolution is described by the advection–diffusion equation∂tf+b(y)∂xf−νΔf=0 on T×(0,1)×R+ with per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2022-08, Vol.283 (3), p.109522, Article 109522
Hauptverfasser: Albritton, Dallas, Beekie, Rajendra, Novack, Matthew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We examine the phenomenon of enhanced dissipation from the perspective of Hörmander's classical theory of second order hypoelliptic operators [33]. Consider a passive scalar in a shear flow, whose evolution is described by the advection–diffusion equation∂tf+b(y)∂xf−νΔf=0 on T×(0,1)×R+ with periodic, Dirichlet, or Neumann conditions in y. We demonstrate that decay is enhanced on the timescale T∼ν−(N+1)/(N+3), where N is the maximal order of vanishing of the derivative b′(y) of the shear profile and N=0 for monotone shear flows. In the periodic setting, we recover the known timescale of Bedrossian and Coti Zelati [8]. Our results are new in the presence of boundaries.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2022.109522