Zeta and Fredholm determinants of self-adjoint operators

Let L be a self-adjoint invertible operator in a Hilbert space such that L−1 is p-summable. Under a certain discrete dimension spectrum assumption on L, we study the relation between the (regularized) Fredholm determinant, detp(I+z⋅L−1), on the one hand and the zeta regularized determinant, detζ(L+z...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2022-07, Vol.283 (1), p.109491, Article 109491
Hauptverfasser: Hartmann, Luiz, Lesch, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let L be a self-adjoint invertible operator in a Hilbert space such that L−1 is p-summable. Under a certain discrete dimension spectrum assumption on L, we study the relation between the (regularized) Fredholm determinant, detp(I+z⋅L−1), on the one hand and the zeta regularized determinant, detζ(L+z), on the other. One of the main results is the formuladetζ(L+z)detζ(L)=exp⁡(∑j=1p−1zjj!⋅djdzjlog⁡detζ(L+z)|z=0)⋅detp(I+z⋅L−1). We show that the derivatives djdzjlog⁡detζ(L+z)|z=0 can be expressed in terms of (regularized) zeta values and heat trace coefficients of L. Furthermore, we give a general criterion in terms of the heat trace coefficients (and which is, e.g., fulfilled for large classes of elliptic operators) which guarantees that the constant term in the asymptotic expansion of the Fredholm determinant, log⁡detp(I+z⋅L−1), equals the zeta determinant of L.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2022.109491