Thermalisation for Wigner matrices

We compute the deterministic approximation of products of Sobolev functions of large Wigner matrices W and provide an optimal error bound on their fluctuation with very high probability. This generalizes Voiculescu's seminal theorem [36] from polynomials to general Sobolev functions, as well as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2022-04, Vol.282 (8), p.109394, Article 109394
Hauptverfasser: Cipolloni, Giorgio, Erdős, László, Schröder, Dominik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We compute the deterministic approximation of products of Sobolev functions of large Wigner matrices W and provide an optimal error bound on their fluctuation with very high probability. This generalizes Voiculescu's seminal theorem [36] from polynomials to general Sobolev functions, as well as from tracial quantities to individual matrix elements. Applying the result to eitW for large t, we obtain a precise decay rate for the overlaps of several deterministic matrices with temporally well separated Heisenberg time evolutions; thus we demonstrate the thermalisation effect of the unitary group generated by Wigner matrices.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2022.109394