Thermalisation for Wigner matrices
We compute the deterministic approximation of products of Sobolev functions of large Wigner matrices W and provide an optimal error bound on their fluctuation with very high probability. This generalizes Voiculescu's seminal theorem [36] from polynomials to general Sobolev functions, as well as...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2022-04, Vol.282 (8), p.109394, Article 109394 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We compute the deterministic approximation of products of Sobolev functions of large Wigner matrices W and provide an optimal error bound on their fluctuation with very high probability. This generalizes Voiculescu's seminal theorem [36] from polynomials to general Sobolev functions, as well as from tracial quantities to individual matrix elements. Applying the result to eitW for large t, we obtain a precise decay rate for the overlaps of several deterministic matrices with temporally well separated Heisenberg time evolutions; thus we demonstrate the thermalisation effect of the unitary group generated by Wigner matrices. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/j.jfa.2022.109394 |