Embedding of RCD⁎(K,N) spaces in L2 via eigenfunctions
In this paper we study the family of embeddings Φt of a compact RCD⁎(K,N) space (X,d,m) into L2(X,m) via eigenmaps. Extending part of the classical results [10,11] known for closed Riemannian manifolds, we prove convergence as t↓0 of the rescaled pull-back metrics Φt⁎gL2 in L2(X,m) induced by Φt. Mo...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2021-05, Vol.280 (10), p.108968, Article 108968 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study the family of embeddings Φt of a compact RCD⁎(K,N) space (X,d,m) into L2(X,m) via eigenmaps. Extending part of the classical results [10,11] known for closed Riemannian manifolds, we prove convergence as t↓0 of the rescaled pull-back metrics Φt⁎gL2 in L2(X,m) induced by Φt. Moreover we discuss the behavior of Φt⁎gL2 with respect to measured Gromov-Hausdorff convergence and t. Applications include the quantitative Lp-convergence in the noncollapsed setting for all p |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/j.jfa.2021.108968 |