Gluing Hilbert C⁎-modules over the primitive ideal space
We show that the gluing construction for Hilbert modules introduced by Raeburn in his computation of the Picard group of a continuous-trace C⁎-algebra (1981) [14] can be applied to arbitrary C⁎-algebras, via an algebraic argument with the Haagerup tensor product. We put this result into the context...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2021-04, Vol.280 (8), p.108925, Article 108925 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the gluing construction for Hilbert modules introduced by Raeburn in his computation of the Picard group of a continuous-trace C⁎-algebra (1981) [14] can be applied to arbitrary C⁎-algebras, via an algebraic argument with the Haagerup tensor product. We put this result into the context of descent theory by identifying categories of gluing data for Hilbert modules over C⁎-algebras with categories of comodules over C⁎-coalgebras, giving a Hilbert-module version of a standard construction from algebraic geometry. As a consequence we show that if two C⁎-algebras have the same primitive ideal space T, and are Morita equivalent up to a 2-cocycle on T, then their Picard groups relative to T are isomorphic. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/j.jfa.2021.108925 |