Concentration of measure, classification of submeasures, and dynamics of L0

Exhibiting a new type of measure concentration, we prove uniform concentration bounds for measurable Lipschitz functions on product spaces, where Lipschitz is taken with respect to the metric induced by a weighted covering of the index set of the product. Our proof combines the Herbst argument with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2021-03, Vol.280 (5), p.108890, Article 108890
Hauptverfasser: Schneider, Friedrich Martin, Solecki, Sławomir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Exhibiting a new type of measure concentration, we prove uniform concentration bounds for measurable Lipschitz functions on product spaces, where Lipschitz is taken with respect to the metric induced by a weighted covering of the index set of the product. Our proof combines the Herbst argument with an analogue of Shearer's lemma for differential entropy. We give a quantitative “geometric” classification of diffuse submeasures into elliptic, parabolic, and hyperbolic. We prove that any non-elliptic submeasure (for example, any measure, or any pathological submeasure) has a property that we call covering concentration. Our results have strong consequences for the dynamics of the corresponding topological L0-groups.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2020.108890