The determinant of one-dimensional polyharmonic operators of arbitrary order
We obtain an explicit expression for the regularised spectral determinant of the polyharmonic operator Pn=(−1)n(∂x)2n on (0,T) with Dirichlet boundary conditions and n a positive integer, and show that it satisfies the asymptotics log(detPn)=−n2logn+[7ζ(3)2π2+32+log(T4)]n2+O(n) for large n. This...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2020-12, Vol.279 (12), p.108783, Article 108783 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We obtain an explicit expression for the regularised spectral determinant of the polyharmonic operator Pn=(−1)n(∂x)2n on (0,T) with Dirichlet boundary conditions and n a positive integer, and show that it satisfies the asymptotics log(detPn)=−n2logn+[7ζ(3)2π2+32+log(T4)]n2+O(n) for large n. This is a consequence of sharp upper and lower bounds for log(detPn) valid for all n and which coincide in the terms up to order n. These results form the basis to analyse more general operators with nonconstant coefficients and show that the corresponding determinants have a similar asymptotic behaviour. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/j.jfa.2020.108783 |