Coarse Baum-Connes conjecture and rigidity for Roe algebras

In this paper, we connect the rigidity problem and the coarse Baum-Connes conjecture for Roe algebras. In particular, we show that if X and Y are two uniformly locally finite metric spaces such that their Roe algebras are ⁎-isomorphic, then X and Y are coarsely equivalent provided either X or Y sati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2020-11, Vol.279 (9), p.108728, Article 108728
Hauptverfasser: M. Braga, Bruno, Chung, Yeong Chyuan, Li, Kang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we connect the rigidity problem and the coarse Baum-Connes conjecture for Roe algebras. In particular, we show that if X and Y are two uniformly locally finite metric spaces such that their Roe algebras are ⁎-isomorphic, then X and Y are coarsely equivalent provided either X or Y satisfies the coarse Baum-Connes conjecture with coefficients. It is well-known that coarse embeddability into a Hilbert space implies the coarse Baum-Connes conjecture with coefficients. On the other hand, we provide a new example of a finitely generated group satisfying the coarse Baum-Connes conjecture with coefficients but which does not coarsely embed into a Hilbert space.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2020.108728