Regularity of the centered fractional maximal function on radial functions
We study the regularity properties of the centered fractional maximal function Mβ. More precisely, we prove that the map f↦|∇Mβf| is bounded and continuous from W1,1(Rd) to Lq(Rd) in the endpoint case q=d/(d−β) if f is a radial function. For d=1, the radiality assumption can be removed. This corresp...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2020-11, Vol.279 (8), p.108686, Article 108686 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the regularity properties of the centered fractional maximal function Mβ. More precisely, we prove that the map f↦|∇Mβf| is bounded and continuous from W1,1(Rd) to Lq(Rd) in the endpoint case q=d/(d−β) if f is a radial function. For d=1, the radiality assumption can be removed. This corresponds to the counterparts of known results for the non-centered fractional maximal function. The main new idea consists in relating the centered and non-centered fractional maximal function at the derivative level. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/j.jfa.2020.108686 |