Regularity of the centered fractional maximal function on radial functions

We study the regularity properties of the centered fractional maximal function Mβ. More precisely, we prove that the map f↦|∇Mβf| is bounded and continuous from W1,1(Rd) to Lq(Rd) in the endpoint case q=d/(d−β) if f is a radial function. For d=1, the radiality assumption can be removed. This corresp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2020-11, Vol.279 (8), p.108686, Article 108686
Hauptverfasser: Beltran, David, Madrid, José
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the regularity properties of the centered fractional maximal function Mβ. More precisely, we prove that the map f↦|∇Mβf| is bounded and continuous from W1,1(Rd) to Lq(Rd) in the endpoint case q=d/(d−β) if f is a radial function. For d=1, the radiality assumption can be removed. This corresponds to the counterparts of known results for the non-centered fractional maximal function. The main new idea consists in relating the centered and non-centered fractional maximal function at the derivative level.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2020.108686