Constrained convex bodies with extremal affine surface areas
Given a convex body K⊆Rn and p∈R, we introduce and study the extremal inner and outer affine surface areasISp(K)=supK′⊆K(asp(K′)) and osp(K)=infK′⊇K(asp(K′)), where asp(K′) denotes the Lp-affine surface area of K′, and the supremum is taken over all convex subsets of K and the infimum over all con...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2020-08, Vol.279 (3), p.108531, Article 108531 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a convex body K⊆Rn and p∈R, we introduce and study the extremal inner and outer affine surface areasISp(K)=supK′⊆K(asp(K′)) and osp(K)=infK′⊇K(asp(K′)), where asp(K′) denotes the Lp-affine surface area of K′, and the supremum is taken over all convex subsets of K and the infimum over all convex compact subsets containing K.
The convex body that realizes IS1(K) in dimension 2 was determined in [3] where it was also shown that this body is the limit shape of lattice polytopes in K. In higher dimensions no results are known about the extremal bodies.
We use a thin shell estimate of [23] and the Löwner ellipsoid to give asymptotic estimates on the size of ISp(K) and osp(K). Surprisingly, it turns out that both quantities are proportional to a power of volume. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/j.jfa.2020.108531 |