Lifting for manifold-valued maps of bounded variation
Let N be a smooth, compact, connected Riemannian manifold without boundary. Let E→N be the Riemannian universal covering of N. For any bounded, smooth domain Ω⊆Rd and any u∈BV(Ω,N), we show that u has a lifting v∈BV(Ω,E). Our result proves a conjecture by Bethuel and Chiron.
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2020-06, Vol.278 (10), p.108453, Article 108453 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let N be a smooth, compact, connected Riemannian manifold without boundary. Let E→N be the Riemannian universal covering of N. For any bounded, smooth domain Ω⊆Rd and any u∈BV(Ω,N), we show that u has a lifting v∈BV(Ω,E). Our result proves a conjecture by Bethuel and Chiron. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/j.jfa.2019.108453 |