Lifting for manifold-valued maps of bounded variation

Let N be a smooth, compact, connected Riemannian manifold without boundary. Let E→N be the Riemannian universal covering of N. For any bounded, smooth domain Ω⊆Rd and any u∈BV(Ω,N), we show that u has a lifting v∈BV(Ω,E). Our result proves a conjecture by Bethuel and Chiron.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2020-06, Vol.278 (10), p.108453, Article 108453
Hauptverfasser: Canevari, Giacomo, Orlandi, Giandomenico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let N be a smooth, compact, connected Riemannian manifold without boundary. Let E→N be the Riemannian universal covering of N. For any bounded, smooth domain Ω⊆Rd and any u∈BV(Ω,N), we show that u has a lifting v∈BV(Ω,E). Our result proves a conjecture by Bethuel and Chiron.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2019.108453