Linear inviscid damping and enhanced viscous dissipation of shear flows by using the conjugate operator method
We study the large time behavior of solutions to two-dimensional Euler and Navier-Stokes equations linearized about shear flows of the mixing layer type in the unbounded channel T×R. Under a simple spectral stability assumption on a self-adjoint operator, we prove a local form of the linear inviscid...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2020-02, Vol.278 (3), p.108339, Article 108339 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the large time behavior of solutions to two-dimensional Euler and Navier-Stokes equations linearized about shear flows of the mixing layer type in the unbounded channel T×R. Under a simple spectral stability assumption on a self-adjoint operator, we prove a local form of the linear inviscid damping that is uniform with respect to small viscosity. We also prove a local form of the enhanced viscous dissipation that takes place at times of order ν−1/3, ν being the small viscosity. To prove these results, we use a Hamiltonian approach, following the conjugate operator method developed in the study of Schrödinger operators, combined with a hypocoercivity argument to handle the viscous case. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/j.jfa.2019.108339 |