Linear inviscid damping and enhanced viscous dissipation of shear flows by using the conjugate operator method

We study the large time behavior of solutions to two-dimensional Euler and Navier-Stokes equations linearized about shear flows of the mixing layer type in the unbounded channel T×R. Under a simple spectral stability assumption on a self-adjoint operator, we prove a local form of the linear inviscid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2020-02, Vol.278 (3), p.108339, Article 108339
Hauptverfasser: Grenier, Emmanuel, Nguyen, Toan T., Rousset, Frédéric, Soffer, Avy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the large time behavior of solutions to two-dimensional Euler and Navier-Stokes equations linearized about shear flows of the mixing layer type in the unbounded channel T×R. Under a simple spectral stability assumption on a self-adjoint operator, we prove a local form of the linear inviscid damping that is uniform with respect to small viscosity. We also prove a local form of the enhanced viscous dissipation that takes place at times of order ν−1/3, ν being the small viscosity. To prove these results, we use a Hamiltonian approach, following the conjugate operator method developed in the study of Schrödinger operators, combined with a hypocoercivity argument to handle the viscous case.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2019.108339