Coarea formulae and chain rules for the Jacobian determinant in fractional Sobolev spaces

We prove weak and strong versions of the coarea formula and the chain rule for distributional Jacobian determinants Ju for functions u in fractional Sobolev spaces Ws,p(Ω), where Ω is a bounded domain in Rn with smooth boundary. The weak forms of the formulae are proved for the range sp>n−1, s≥n−...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2020-01, Vol.278 (2), p.108312, Article 108312
Hauptverfasser: Gladbach, Peter, Olbermann, Heiner
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove weak and strong versions of the coarea formula and the chain rule for distributional Jacobian determinants Ju for functions u in fractional Sobolev spaces Ws,p(Ω), where Ω is a bounded domain in Rn with smooth boundary. The weak forms of the formulae are proved for the range sp>n−1, s≥n−1n, while the strong versions are proved for the range sp>n, s≥nn+1. We also provide a chain rule for the distributional Jacobian determinant of Hölder functions and point out its relation to two open problems in geometric analysis.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2019.108312