New role for crinamine as a potent, safe and selective inhibitor of human monoamine oxidase B: In vitro and in silico pharmacology and modeling
The development of selective inhibitors of monoamine oxidase B (MAO-B) has been essential in treating Parkinson's disease. However, the apparent hepatotoxicity and drug-drug interactions of current inhibitors accentuate the need for the development of novel pharmacotherapies. Crossyne guttata (...
Gespeichert in:
Veröffentlicht in: | Journal of ethnopharmacology 2020-02, Vol.248, p.112305, Article 112305 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The development of selective inhibitors of monoamine oxidase B (MAO-B) has been essential in treating Parkinson's disease. However, the apparent hepatotoxicity and drug-drug interactions of current inhibitors accentuate the need for the development of novel pharmacotherapies. Crossyne guttata (L.) D. & U. Müll-Doblies is used frequently by Rastafarian bush doctors to treat alcoholism, a disorder which is also accentuated by MAO.
The study sought to isolate, identify and characterise the biologically active constituents of C. guttata based on their ability to inhibit the MAO enzymes.
Column chromatography was used to isolate the biologically active alkaloids of C. guttata. The ability of the alkaloids to inhibit the biotransformation of 4-aminoantipyrine by the MAO enzymes was evaluated in vitro. In silico docking was conducted using AutoDock Vina server while the pharmacokinetic properties of the compounds were evaluated using SwissADME.
Chromatographic separation of an ethanolic fraction of C. guttata yielded the alkaloids crinamine 1 and epibuphanisine 2. 1 and 2 along with structurally related alkaloids haemanthamine 3 and haemanthidine 4 were evaluated for their ability to inhibit the action of isozymes of MAO in vitro. Alkaloids effected submicromolar IC50 values against MAO-B, the most potent of which being crinamine 1 (0.014 μM) > haemanthidine 4 (0.017 μM) > epibuphanisine 2 (0.039 μM) > haemanthamine 3 (0.112 μM). Binding energies of the alkaloids correlated well with their inhibitory potential with crinamine displaying the best binding efficacy and binding energy score with MAO-B.
Crinamine and epibuphanisine exhibited potent and selective inhibitory activity towards MAO-B. After comprehensive in silico investigations encompassing robust molecular docking analysis, the drug-like attributes and safety of the alkaloids suggest the crinamine is a potentially safe drug for human application.
[Display omitted] |
---|---|
ISSN: | 0378-8741 1872-7573 |
DOI: | 10.1016/j.jep.2019.112305 |