Synergistic enhancement of lithium iron phosphate electrochemical performance by organic zinc source doping and crystalline carbon layer capping
In this study, lithium iron phosphate (LFP) is prepared as cathode material by hydrothermal synthesis method and the combined effect of doping and capping is applied to co-modify it. We thoroughly investigate how Zn2+ doping and PA capping layer affect the crystal structure, microscopic morphology,...
Gespeichert in:
Veröffentlicht in: | Journal of electroanalytical chemistry (Lausanne, Switzerland) Switzerland), 2024-12, Vol.975, p.118716, Article 118716 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, lithium iron phosphate (LFP) is prepared as cathode material by hydrothermal synthesis method and the combined effect of doping and capping is applied to co-modify it. We thoroughly investigate how Zn2+ doping and PA capping layer affect the crystal structure, microscopic morphology, and electrochemical properties of LFP cathode materials. The experimental results show that when co-modified with 5 % Zn2+ doping combined with 7 % PA capping layer, the resulting cathode material exhibits a discharge specific capacity of 165.5 mAh g−1, and the capacity retention rate can still be maintained at a high level of 98.6 % after 200 charge–discharge cycles. |
---|---|
ISSN: | 1572-6657 |
DOI: | 10.1016/j.jelechem.2024.118716 |