Synergistic boost in Fe3O4 anode performance for li-ion batteries via Zn and Cu double doping and multi-walled carbon nanotube composite integration

[Display omitted] •Zinc copper ferrite@MWCNT was prepared via a simple hydrothermal method.•Structural and morphological analysis of composite using XRD, FESEM, and HRTEM.•It showed a high specific capacity of 646 mAh g–1 after 800 cycles at 500 mA g−1.•Composite material reveals good rate capabilit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electroanalytical chemistry (Lausanne, Switzerland) Switzerland), 2024-07, Vol.964, p.118327, Article 118327
Hauptverfasser: Kumar, Arvind, Mukesh, P., Lakshmi Sagar, G., Hegde, Akshay, Nagaraja, H.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] •Zinc copper ferrite@MWCNT was prepared via a simple hydrothermal method.•Structural and morphological analysis of composite using XRD, FESEM, and HRTEM.•It showed a high specific capacity of 646 mAh g–1 after 800 cycles at 500 mA g−1.•Composite material reveals good rate capability and outstanding cyclic stability. In this study, a novel nanocomposite material comprising pure Fe3O4 (FO), doped Zn0.5Cu0.5Fe2O4-3 (ZCFO-3), and Zn0.5Cu0.5Fe2O4-3@ Multi-walled carbon nanotube (ZCFO-3@MWCNT) nanocomposite material is carefully prepared using a simple one-step hydrothermal process. Comprehensive surface and morphological analysis are conducted using X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), and High-resolution transmission electron microscopy (HRTEM), while compositional studies are investigated through Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The electrochemical performance is fully analyzed through Cyclic voltammetry (CV), Electrochemical impedance spectroscopy (EIS), rate capability tests, discharge/charge capacity, and cyclic stability evaluations. Among these three nanomaterials, ZCFO-3@MWCNT nanocomposite at 100 mA g−1 current density reveals the best performance, with a discharge capacity of 1974 mAh g–1, ZCFO-3 and FO reveal 1340 mAh g–1 and 1317 mAh g–1 respectively. After 800 cycles at 500 mA g−1 current density, ZCFO-3@MWCNT stays strong with a discharge capacity of 646 mAh g–1, while ZCFO-3 manages only 362 mAh g–1 and FO only 111 mAh g–1. After 1200 cycles at 500 mA g−1, the nanocomposite still delivers 518 mAh g–1. This study suggests that ZCFO-3@MWCNT could be a promising anode material for lithium-ion batteries.
ISSN:1572-6657
1873-2569
DOI:10.1016/j.jelechem.2024.118327