Mechanism of membrane fouling mitigation by microalgae biofilm formation for low C/N mariculture wastewater treatment: EPS characteristics, composition and interfacial interaction energy
Membrane fouling is considered one of the main limitations of membrane bioreactor (MBR) in wastewater treatment applications, including low C/N aquaculture wastewater. Although much research has focused on the integration of MBR with bacterial biofilm, there has been limited exploration into the mit...
Gespeichert in:
Veröffentlicht in: | Journal of environmental chemical engineering 2024-12, Vol.12 (6), p.114146, Article 114146 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Membrane fouling is considered one of the main limitations of membrane bioreactor (MBR) in wastewater treatment applications, including low C/N aquaculture wastewater. Although much research has focused on the integration of MBR with bacterial biofilm, there has been limited exploration into the mitigation mechanism of membrane fouling by microalgae biofilm. In this study, extracellular polymeric substances (EPS) before and after the formation of microalgae biofilm were compared, leading to the conclusion that the microalgae biofilm formation could reduce membrane fouling potential of EPS, thereby mitigating membrane fouling. EPS content and fluorescence components analysis indicated that microalgae biofilm formation could effectively reduce protein to polysaccharide ratios (PN/PS) of three types of EPS (soluble EPS (S-EPS), loosely bound EPS (LB-EPS), and tightly bound EPS (TB-EPS)), lowering the membrane fouling potential associated with protein substances, especially tryptophan-like protein. Moreover, the analysis of molecular weight (MW) suggested that microalgae biofilm could considerably decrease the MW of both S-EPS and LB-EPS, thus mitigating the influence of high MW substances on membrane fouling. Meanwhile, the precise composition of EPS revealed a reduction in hydrophobic alkanes and recalcitrant aromatics, which often lead to membrane fouling. Furthermore, the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory further highlighted that microalgae biofilm weakened the interfacial interaction energy between the three EPS and membrane to mitigate membrane fouling. Therefore, this study provides a comprehensive elucidation of how microalgae biofilm formation mitigates membrane fouling, offering theoretical support for utilizing microalgae biofilm MBR in treating low C/N mariculture wastewater.
[Display omitted]
•A novel microalgae biofilm MBR excels at treating low C/N mariculture wastewater.•Microalgal biofilm reduce the membrane fouling contribution of proteins in EPS.•Biofilm formation decrease the proportion of hydrophobic alkanes and aromatics.•Microalgae biofilm induce low-adhesion EPS, mitigating membrane fouling. |
---|---|
ISSN: | 2213-3437 |
DOI: | 10.1016/j.jece.2024.114146 |