Sustainable and green synthesis of novel acid phosphatase mediated platinum nanoparticles (ACP-PtNPs) and investigation of its in vitro antibacterial, antioxidant, hemolysis and photocatalytic activities

Clean water is a worldwide major problem and several conventional strategies are accompanied with a number of drawbacks. To overcome this problem, new methods and materials have been introduced to address the problem of water purification. Platinum nanoparticles (PtNPs) are a fascinating and appeali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental chemical engineering 2022-06, Vol.10 (3), p.107623, Article 107623
Hauptverfasser: Rehman, Khalil ur, Khan, Shahid Ullah, Tahir, Kamran, Zaman, Umber, Khan, Dilfaraz, Nazir, Sadia, Khan, Wasim Ullah, Khan, Muhammad Imran, Ullah, Kalim, Anjum, Syed Ishtiaq, Bibi, Robina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Clean water is a worldwide major problem and several conventional strategies are accompanied with a number of drawbacks. To overcome this problem, new methods and materials have been introduced to address the problem of water purification. Platinum nanoparticles (PtNPs) are a fascinating and appealing research area as they are a series of effective environmental and biomedical applications. The present study is the first to report an immediate, cost-effective, and eco-begin synthesis of ACP-PtNPs using acid phosphatase of Rumex dentatus seeds extract. Acid phosphatase performed an imperative role in the stability, and capping of ACP-PtNPs. The ACP-PtNPs were characterized by different techniques, including UV–visible spectroscopy, XRD, FTIR, XPS, HRTEM, EDS, SEM and DLS analysis. ACP-PtNPs were brown-colored and mostly spherical in shape, with ultra-small particle size (1–7 nm). The onset of a plasmon peak at 295 nm confirmed the formation of ACP-PtNPs. The as-prepared nanoparticles were tested for the photocatalytic degradation of methylene blue (MB) under visible light irradiation. The results showed that ACP-PtNPs exhibited remarkable photocatalytic efficiency by degrading 99% of MB only in 28 min. ACP-PtNPs were also showed strong photoinhibition efficiency against gram negative bacteria. ACP-PtNPs were found to be harmless to normal healthy RBCs in the cytotoxicity investigation. Furthermore, ACP-PtNPs also possessed superb antioxidant activity whereby effectively scavenging 88% of stable and harmful 1,1-diphenyl-2-picryl-hydrazil (DPPH) radical. These exceptional photocatalytic and biomedical activities may be attributed to the trivial size and large surface area of ACP-PtNPs. Synthesis, characterizations, biomedical and photocatalytic applications of ACP-PtNPs [Display omitted] •Synthesis of novel acid phosphatase mediated ACP-PtNPs through a green synthetic approach.•ACP-PtNPs were tested for the photodegradation of methylene blue.•PtNPs have significant antibacterial activity against multidrug resistant bacteria (i.e E.coli).•Toxicity against red blood cells (RBCs).•DPPH scavenging activity was studied.
ISSN:2213-3437
2213-3437
DOI:10.1016/j.jece.2022.107623