Odd-sunflowers

Extending the notion of sunflowers, we call a family of at least two sets an odd-sunflower if every element of the underlying set is contained in an odd number of sets or in none of them. It follows from the Erdős–Szemerédi conjecture, recently proved by Naslund and Sawin, that there is a constant μ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial theory. Series A 2024-08, Vol.206, p.105889, Article 105889
Hauptverfasser: Frankl, Peter, Pach, János, Pálvölgyi, Dömötör
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Extending the notion of sunflowers, we call a family of at least two sets an odd-sunflower if every element of the underlying set is contained in an odd number of sets or in none of them. It follows from the Erdős–Szemerédi conjecture, recently proved by Naslund and Sawin, that there is a constant μ
ISSN:0097-3165
1096-0899
DOI:10.1016/j.jcta.2024.105889