Real equiangular lines in dimension 18 and the Jacobi identity for complementary subgraphs
We show that the maximum cardinality of an equiangular line system in R18 is at most 59. Our proof includes a novel application of the Jacobi identity for complementary subgraphs. In particular, we show that there does not exist a graph whose adjacency matrix has characteristic polynomial (x−22)(x−2...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial theory. Series A 2024-01, Vol.201, p.105812, Article 105812 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the maximum cardinality of an equiangular line system in R18 is at most 59. Our proof includes a novel application of the Jacobi identity for complementary subgraphs. In particular, we show that there does not exist a graph whose adjacency matrix has characteristic polynomial (x−22)(x−2)42(x+6)15(x+8)2. |
---|---|
ISSN: | 0097-3165 1096-0899 |
DOI: | 10.1016/j.jcta.2023.105812 |