Real equiangular lines in dimension 18 and the Jacobi identity for complementary subgraphs

We show that the maximum cardinality of an equiangular line system in R18 is at most 59. Our proof includes a novel application of the Jacobi identity for complementary subgraphs. In particular, we show that there does not exist a graph whose adjacency matrix has characteristic polynomial (x−22)(x−2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial theory. Series A 2024-01, Vol.201, p.105812, Article 105812
Hauptverfasser: Greaves, Gary R.W., Syatriadi, Jeven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the maximum cardinality of an equiangular line system in R18 is at most 59. Our proof includes a novel application of the Jacobi identity for complementary subgraphs. In particular, we show that there does not exist a graph whose adjacency matrix has characteristic polynomial (x−22)(x−2)42(x+6)15(x+8)2.
ISSN:0097-3165
1096-0899
DOI:10.1016/j.jcta.2023.105812