Trianguloids and triangulations of root polytopes

Triangulations of a product of two simplices and, more generally, of root polytopes are closely related to Gelfand-Kapranov-Zelevinsky's theory of discriminants, to tropical geometry, tropical oriented matroids, and to generalized permutohedra. We introduce a new approach to these objects, iden...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial theory. Series A 2024-01, Vol.201, p.105802, Article 105802
Hauptverfasser: Galashin, Pavel, Nenashev, Gleb, Postnikov, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Triangulations of a product of two simplices and, more generally, of root polytopes are closely related to Gelfand-Kapranov-Zelevinsky's theory of discriminants, to tropical geometry, tropical oriented matroids, and to generalized permutohedra. We introduce a new approach to these objects, identifying a triangulation of a root polytope with a certain bijection between lattice points of two generalized permutohedra. In order to study such bijections, we define trianguloids as edge-colored graphs satisfying simple local axioms. We prove that trianguloids are in bijection with triangulations of root polytopes.
ISSN:0097-3165
1096-0899
DOI:10.1016/j.jcta.2023.105802