Proof of Dilks' bijectivity conjecture on Baxter permutations

Baxter permutations originally arose in studying common fixed points of two commuting continuous functions. In 2015, Dilks proposed a conjectured bijection between Baxter permutations and non-intersecting triples of lattice paths in terms of inverse descent bottoms, descent positions and inverse des...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial theory. Series A 2023-11, Vol.200, p.105796, Article 105796
Hauptverfasser: Lin, Zhicong, Liu, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Baxter permutations originally arose in studying common fixed points of two commuting continuous functions. In 2015, Dilks proposed a conjectured bijection between Baxter permutations and non-intersecting triples of lattice paths in terms of inverse descent bottoms, descent positions and inverse descent tops. We prove this bijectivity conjecture by investigating its connection with the Françon–Viennot bijection. As a result, we obtain a permutation interpretation of the (t,q)-analog of the Baxter numbers1[n+11]q[n+12]q∑k=0n−1q3(k+12)[n+1k]q[n+1k+1]q[n+1k+2]qtk, where [nk]q denote the q-binomial coefficients.
ISSN:0097-3165
1096-0899
DOI:10.1016/j.jcta.2023.105796