Rado's theorem for rings and modules

We extend classical results of Rado on partition regularity of systems of linear equations with integer coefficients to the case when the coefficient ring is either an arbitrary integral domain or a noetherian ring. In particular, we show that a system of homogeneous linear equations over an infinit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial theory. Series A 2021-05, Vol.180, p.105402, Article 105402
Hauptverfasser: Byszewski, Jakub, Krawczyk, Elżbieta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We extend classical results of Rado on partition regularity of systems of linear equations with integer coefficients to the case when the coefficient ring is either an arbitrary integral domain or a noetherian ring. In particular, we show that a system of homogeneous linear equations over an infinite integral domain is partition regular if and only if the corresponding matrix satisfies the columns conditions. The crucial idea is to study partition regularity for general modules rather than only for rings. Contrary to previous techniques, our approach is independent of the characteristic of the coefficient ring.
ISSN:0097-3165
1096-0899
DOI:10.1016/j.jcta.2021.105402