Rado's theorem for rings and modules
We extend classical results of Rado on partition regularity of systems of linear equations with integer coefficients to the case when the coefficient ring is either an arbitrary integral domain or a noetherian ring. In particular, we show that a system of homogeneous linear equations over an infinit...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial theory. Series A 2021-05, Vol.180, p.105402, Article 105402 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We extend classical results of Rado on partition regularity of systems of linear equations with integer coefficients to the case when the coefficient ring is either an arbitrary integral domain or a noetherian ring. In particular, we show that a system of homogeneous linear equations over an infinite integral domain is partition regular if and only if the corresponding matrix satisfies the columns conditions. The crucial idea is to study partition regularity for general modules rather than only for rings. Contrary to previous techniques, our approach is independent of the characteristic of the coefficient ring. |
---|---|
ISSN: | 0097-3165 1096-0899 |
DOI: | 10.1016/j.jcta.2021.105402 |