Weak saturation numbers of complete bipartite graphs in the clique
The notion of weak saturation was introduced by Bollobás in 1968. Let F and H be graphs. A spanning subgraph G⊆F is weakly(F,H)-saturated if it contains no copy of H but there exists an ordering e1,…,et of E(F)∖E(G) such that for each i∈[t], the graph G∪{e1,…,ei} contains a copy H′ of H such that ei...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial theory. Series A 2021-02, Vol.178, p.105357, Article 105357 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The notion of weak saturation was introduced by Bollobás in 1968. Let F and H be graphs. A spanning subgraph G⊆F is weakly(F,H)-saturated if it contains no copy of H but there exists an ordering e1,…,et of E(F)∖E(G) such that for each i∈[t], the graph G∪{e1,…,ei} contains a copy H′ of H such that ei∈H′. Define wsat(F,H) to be the minimum number of edges in a weakly (F,H)-saturated graph. In this paper, we prove for all t≥2 and n≥3t−3, that wsat(Kn,Kt,t)=(t−1)(n+1−t/2), and we determine the value of wsat(Kn,Kt−1,t) as well. For fixed 2≤s |
---|---|
ISSN: | 0097-3165 1096-0899 |
DOI: | 10.1016/j.jcta.2020.105357 |