Partitioning the vertices of a torus into isomorphic subgraphs

Let H be an induced subgraph of the torus Ckm. We show that when k≥3 is even and |V(H)| divides some power of k, then for sufficiently large n the torus Ckn has a perfect vertex-packing with induced copies of H. On the other hand, disproving a conjecture of Gruslys, we show that when k is odd and no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial theory. Series A 2020-08, Vol.174, p.105252, Article 105252
Hauptverfasser: Bonamy, Marthe, Morrison, Natasha, Scott, Alex
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let H be an induced subgraph of the torus Ckm. We show that when k≥3 is even and |V(H)| divides some power of k, then for sufficiently large n the torus Ckn has a perfect vertex-packing with induced copies of H. On the other hand, disproving a conjecture of Gruslys, we show that when k is odd and not a prime power, then there exists H such that |V(H)| divides some power of k, but there is no n such that Ckn has a perfect vertex-packing with copies of H. We also disprove a conjecture of Gruslys, Leader and Tan by exhibiting a subgraph H of the k-dimensional hypercube Qk, such that there is no n for which Qn has a perfect edge-packing with copies of H.
ISSN:0097-3165
1096-0899
DOI:10.1016/j.jcta.2020.105252