Generic torus orbit closures in Schubert varieties
The closure of a generic torus orbit in the flag variety G/B of type An−1 is known to be a permutohedral variety and well studied. In this paper we introduce the notion of a generic torus orbit in the Schubert variety Xw(w∈Sn) and study its closure Yw. We identify the maximal cone in the fan of Yw c...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial theory. Series A 2020-02, Vol.170, p.105143, Article 105143 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The closure of a generic torus orbit in the flag variety G/B of type An−1 is known to be a permutohedral variety and well studied. In this paper we introduce the notion of a generic torus orbit in the Schubert variety Xw(w∈Sn) and study its closure Yw. We identify the maximal cone in the fan of Yw corresponding to a fixed point uB(u≤w), associate a graph Γw(u) to each u≤w, and show that Yw is smooth at uB if and only if Γw(u) is a forest. We also introduce a polynomial Aw(t) for each w, which agrees with the Eulerian polynomial when w is the longest element of Sn, and show that the Poincaré polynomial of Yw agrees with Aw(t2) when Yw is smooth. |
---|---|
ISSN: | 0097-3165 1096-0899 |
DOI: | 10.1016/j.jcta.2019.105143 |