Serial and parallel kernelization of Multiple Hitting Set parameterized by the Dilworth number, implemented on the GPU
The NP-hard Multiple Hitting Set problem is the problem of finding a minimum-cardinality set intersecting each of the sets in a given input collection a given number of times. Generalizing a well-known data reduction algorithm due to Weihe, we show a problem kernel for Multiple Hitting Set parameter...
Gespeichert in:
Veröffentlicht in: | Journal of computer and system sciences 2024-02, Vol.139, p.103479, Article 103479 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The NP-hard Multiple Hitting Set problem is the problem of finding a minimum-cardinality set intersecting each of the sets in a given input collection a given number of times. Generalizing a well-known data reduction algorithm due to Weihe, we show a problem kernel for Multiple Hitting Set parameterized by the Dilworth number, a graph parameter introduced by Foldes and Hammer in 1978 yet seemingly so far unexplored in the context of parameterized complexity theory. Using matrix multiplication, we speed up the algorithm to quadratic sequential time and logarithmic parallel time. We experimentally evaluate our algorithms. By implementing our algorithm on GPUs, we show the feasibility of realizing kernelization algorithms on SIMD (Single Instruction, Multiple Data) architectures. |
---|---|
ISSN: | 0022-0000 |
DOI: | 10.1016/j.jcss.2023.103479 |