Experimental, numerical and theoretical study on the steel-grid-shear-wall connected to frame-beams only
A novel steel grid shear wall structure connected to frame beams only (SGSW-BO) was proposed to reduce the welding work of the stiffened steel-plate shear wall, fabricate structural component standardly, and facilitate seismic retrofitting. Two 1:2 scaled specimens were fabricated and tested under h...
Gespeichert in:
Veröffentlicht in: | Journal of constructional steel research 2025-01, Vol.224, p.109091, Article 109091 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel steel grid shear wall structure connected to frame beams only (SGSW-BO) was proposed to reduce the welding work of the stiffened steel-plate shear wall, fabricate structural component standardly, and facilitate seismic retrofitting. Two 1:2 scaled specimens were fabricated and tested under horizontal cyclic load to study the mechanical properties of this novel lateral resisting system. The finite element model was established using ABAQUS and parametric studies were conducted to investigate the effects of the opening ratio, the sectional dimensions of the T-shaped steel grid members and vertical boundary elements on the lateral resistance performances of the structure. Then the lateral bearing capacity of the SGSW-BO was derived and verified. The results showed that the SGSW-BO exhibited good hysteresis performance, and the plastic development and energy dissipation were mainly provided by the T-shaped steel shear wall. The finite element model could simulate and predict the mechanical performances of the SGSW-BO accurately, and the following parametric analyses were carried out based on the finite element model. It could be found from the parametric analyses that the lateral bearing capacity and initial stiffness of the structure changed dramatically with the opening ratio, the flange width and thickness of T-shaped steel elements, but the stiffness of vertical boundary element would not affect the hysteresis performance significantly. Finally, the calculation method of the lateral bearing capacity of the SGSW-BO was derived and could predict the lateral bearing capacity accurately.
•A novel lateral-resistance system: the steel grid shear wall connected to beams only was proposed for high-rise buildings.•The SGSW-BO exhibited excellent lateral-resistance without significant deformation or failure in the boundary elements.•The calculation formula derived in this paper could predict the lateral bearing capacity of the SGSW-BO accurately. |
---|---|
ISSN: | 0143-974X |
DOI: | 10.1016/j.jcsr.2024.109091 |