Radio frequency magnetron sputtering growth of Ni-doped ZnO thin films with nanocolumnar structures

•The study improved the quality and structure of a Ni-doped Zinc Oxide film using RF sputtering and a seeding layer to improve current spreading.•The addition of a seeding layer increased the electrical conductivity and improved the structure of the Ni-doped Zinc Oxide film, making it a good materia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2024-10, Vol.644, p.127835, Article 127835
Hauptverfasser: Mazwan, M., Ng, S.S., Samsol Baharin, M.S.N., Pakhuruddin, M.Z., Abu Bakar, A.S., Abd. Rahman, M.N., Al- Zuhairi, O., Abd Rahim, A.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•The study improved the quality and structure of a Ni-doped Zinc Oxide film using RF sputtering and a seeding layer to improve current spreading.•The addition of a seeding layer increased the electrical conductivity and improved the structure of the Ni-doped Zinc Oxide film, making it a good material for use in optoelectronic devices.•The use of RF sputtering and a seeding layer allowed for precise control of the amount of Ni in the film, leading to structure improved.•The Ni-doped Zinc Oxide film grown using RF sputtering and a seeding layer showed improved stability for long-term use in various applications. This study describes the RF magnetron sputtering growth of nickel (Ni) doped zinc oxide (ZnO) thin films with nanocolumns (NCs) structures. Using a nickel seed layer, homogeneous and vertically aligned ZnO nanocolumns with a diameter of around 30 nm were successfully grown. The X-ray diffraction (XRD) results confirmed the incorporation of Ni atoms into the ZnO lattice, producing single crystalline structures without secondary phases. High-resolution transmission electron microscopy showed clear lattice planes with a d-spacing value of 3.243 Å corresponding to the wurtzite phase of ZnO. Optimal crystalline quality was achieved by growing the films at 300 °C followed by thermal annealing at 300–500 °C in an oxygen ambient.
ISSN:0022-0248
DOI:10.1016/j.jcrysgro.2024.127835