Bound/positivity preserving SAV schemes for the Patlak-Keller-Segel-Navier-Stokes system

The Patlak-Keller-Segel-Navier-Stokes system describes the biological chemotaxis phenomenon in the fluid environment. It is a coupled nonlinear system with unknowns being the cell density, the concentration of chemoattractants, the fluid velocity and the pressure, and it satisfies an energy dissipat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2023-05, Vol.480, p.112034, Article 112034
Hauptverfasser: Huang, Xueling, Shen, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Patlak-Keller-Segel-Navier-Stokes system describes the biological chemotaxis phenomenon in the fluid environment. It is a coupled nonlinear system with unknowns being the cell density, the concentration of chemoattractants, the fluid velocity and the pressure, and it satisfies an energy dissipation law, preserves the bound/positivity and mass of the cell density. We develop in this paper a class of scalar auxiliary variable (SAV) schemes with relaxation which preserve these properties unconditionally at the discrete level, and only require solving decoupled linear systems with constant coefficients at each time step. We present ample numerical results to validate these schemes, simulate the chemotactic non-aggregation and aggregation with a saturation concentration, as well as investigate the blow-up phenomenon.
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2023.112034