An assessment of multicomponent flow models and interface capturing schemes for spherical bubble dynamics
Numerical simulation of bubble dynamics and cavitation is challenging; even the seemingly simple problem of a collapsing spherical bubble is difficult to compute accurately with a general, three-dimensional, compressible, multicomponent flow solver. Difficulties arise due to both the physical model...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2020-02, Vol.402, p.109080, Article 109080 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Numerical simulation of bubble dynamics and cavitation is challenging; even the seemingly simple problem of a collapsing spherical bubble is difficult to compute accurately with a general, three-dimensional, compressible, multicomponent flow solver. Difficulties arise due to both the physical model and the numerical method chosen for its solution. We consider the 5-equation model of Allaire et al. [1] and Massoni et al. [2], the 5-equation model of Kapila et al. [3], and the 6-equation model of Saurel et al. [4] as candidate approaches for spherical bubble dynamics, and both MUSCL and WENO interface-capturing methods are implemented and compared. We demonstrate the inadequacy of the traditional 5-equation model for spherical bubble collapse problems and explain the corresponding advantages of the augmented model of Kapila et al. [3] for representing this phenomenon. Quantitative comparisons between the augmented 5-equation and 6-equation models for three-dimensional bubble collapse problems demonstrate the versatility of the pressure-disequilibrium model. Lastly, the performance of the pressure-disequilibrium model for representing a three-dimensional spherical bubble collapse for different bubble interior/exterior pressure ratios is evaluated for different numerical methods. Pathologies associated with each factor and their origins are identified and discussed.
•Quantitative comparisons of multicomponent models and methods are presented through 3D, spherical-bubble-collapse problems.•Different bubble interior/exterior pressure ratios and different initial interface equilibrium are studied.•Pathologies associated with each factor are identified and discussed, providing valuable information for future works. |
---|---|
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/j.jcp.2019.109080 |