Worst case tractability of linear problems in the presence of noise: Linear information
We study the worst case tractability of multivariate linear problems defined on separable Hilbert spaces. Information about a problem instance consists of noisy evaluations of arbitrary bounded linear functionals, where the noise is either deterministic or random. The cost of a single evaluation dep...
Gespeichert in:
Veröffentlicht in: | Journal of Complexity 2023-12, Vol.79, p.101782, Article 101782 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the worst case tractability of multivariate linear problems defined on separable Hilbert spaces. Information about a problem instance consists of noisy evaluations of arbitrary bounded linear functionals, where the noise is either deterministic or random. The cost of a single evaluation depends on its precision and is controlled by a cost function. We establish mutual interactions between tractability of a problem with noisy information, the cost function, and tractability of the same problem, but with exact information. |
---|---|
ISSN: | 0885-064X 1090-2708 |
DOI: | 10.1016/j.jco.2023.101782 |