Numerical weighted integration of functions having mixed smoothness

We investigate the approximation of weighted integrals over Rd for integrands from weighted Sobolev spaces of mixed smoothness. We prove upper and lower bounds of the convergence rate of optimal quadratures with respect to n integration nodes for functions from these spaces. In the one-dimensional c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Complexity 2023-10, Vol.78, p.101757, Article 101757
1. Verfasser: Dũng, Dinh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the approximation of weighted integrals over Rd for integrands from weighted Sobolev spaces of mixed smoothness. We prove upper and lower bounds of the convergence rate of optimal quadratures with respect to n integration nodes for functions from these spaces. In the one-dimensional case (d=1), we obtain the right convergence rate of optimal quadratures. For d≥2, the upper bound is performed by sparse-grid quadratures with integration nodes on step hyperbolic crosses in the function domain Rd.
ISSN:0885-064X
1090-2708
DOI:10.1016/j.jco.2023.101757