Numerical weighted integration of functions having mixed smoothness
We investigate the approximation of weighted integrals over Rd for integrands from weighted Sobolev spaces of mixed smoothness. We prove upper and lower bounds of the convergence rate of optimal quadratures with respect to n integration nodes for functions from these spaces. In the one-dimensional c...
Gespeichert in:
Veröffentlicht in: | Journal of Complexity 2023-10, Vol.78, p.101757, Article 101757 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the approximation of weighted integrals over Rd for integrands from weighted Sobolev spaces of mixed smoothness. We prove upper and lower bounds of the convergence rate of optimal quadratures with respect to n integration nodes for functions from these spaces. In the one-dimensional case (d=1), we obtain the right convergence rate of optimal quadratures. For d≥2, the upper bound is performed by sparse-grid quadratures with integration nodes on step hyperbolic crosses in the function domain Rd. |
---|---|
ISSN: | 0885-064X 1090-2708 |
DOI: | 10.1016/j.jco.2023.101757 |