ε-superposition and truncation dimensions in average and probabilistic settings for ∞-variate linear problems
The paper deals with linear problems defined on γ-weighted Hilbert spaces of functions with infinitely many variables. The spaces are endowed with zero-mean Gaussian measures which allows to define and study ε-truncation and ε-superposition dimensions in the average case and probabilistic settings....
Gespeichert in:
Veröffentlicht in: | Journal of Complexity 2020-04, Vol.57, p.101439, Article 101439 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper deals with linear problems defined on γ-weighted Hilbert spaces of functions with infinitely many variables. The spaces are endowed with zero-mean Gaussian measures which allows to define and study ε-truncation and ε-superposition dimensions in the average case and probabilistic settings. Roughly speaking, these ε-dimensions quantify the smallest number k=k(ε) of variables that allow to approximate the ∞-variate functions by special ones that depend on at most k-variables with the average error bounded by ε. In the probabilistic setting, given δ∈(0,1), we want the error ≤ε with probability ≥1−δ. We show that the ε-dimensions are surprisingly small which, for anchored spaces, leads to very efficient algorithms, including the Multivariate Decomposition Methods. |
---|---|
ISSN: | 0885-064X 1090-2708 |
DOI: | 10.1016/j.jco.2019.101439 |