The evolution of the carbon footprint of Dutch raw milk production between 1990 and 2019

The development of the carbon footprint (CF) of raw cow milk over time has been scarcely researched. The objectives of this study are (1) to determine the annual raw cow milk CF in the Netherlands between 1990 and 2019 and (2) to identify the factors explaining the development of the raw cow milk CF...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cleaner production 2022-12, Vol.380, p.134863, Article 134863
Hauptverfasser: Hospers, Jeroen, Kuling, Lody, Modernel, Pablo, Lesschen, Jan Peter, Blonk, Hans, Batlle-Bayer, Laura, van Straalen, Wilfried, Dekker, Sanne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of the carbon footprint (CF) of raw cow milk over time has been scarcely researched. The objectives of this study are (1) to determine the annual raw cow milk CF in the Netherlands between 1990 and 2019 and (2) to identify the factors explaining the development of the raw cow milk CF over time. We applied Life Cycle Assessment (cradle to farm gate) to the average Dutch dairy system and used data collected from national statistics and from the farm accountancy data network. The CF of raw cow milk produced in the Netherlands in 2019 was 992 g CO2-eq. per kg Fat and Protein Corrected Milk (FPCM), while in 1990 it was 1522 g CO2-eq. (kg FPCM)−1. This represents a reduction of 35%. The reduction rate of the CF is affected by the scope of the CF study, i.e. reduction rate is smaller if direct land use change (dLUC) (32%) and soil organic carbon (SOC) balance (29%) are included in the total CF. Methodological choices affect the absolute level of the CF by up to 27%, but the impact on the reduction rate over time is negligible. The results show that continuous improvement in agricultural practices (increased milk and roughage yields, improved feed efficiency and decreased nitrogen application) has played an important role in reducing the CF of milk over the years. Along with this process, the Dutch dairy system has evolved into less grazing and less land devoted to permanent grasslands which decreased carbon sequestration. In order to achieve climate targets, the annual reduction rate needs to be increased and additional efforts are required if the Dutch dairy sector is to play its part in limiting global warming to 1.5 °C. Special attention is needed for the reduction of greenhouse gas (GHG) emission from enteric fermentation and manure storage. However, the main challenge for the future is to find a balanced set of measures to integrally reduce all the sources of GHG emission within the carbon footprint of milk. •The carbon footprint of raw milk for the Netherlands reduced by 35% between 1990 and 2019.•Soil carbon balance had high interannual variation and decreased between 1990 and 2019.•Methodological choices influenced results by up to 27%, but did not affect the trend.
ISSN:0959-6526
1879-1786
DOI:10.1016/j.jclepro.2022.134863