Approximation by sums of shifts and dilations of a single function and neural networks

We find sufficient conditions on a function f to ensure that sums of functions of the form f(αx−θ), where α∈A⊂R and θ∈Θ⊂R, are dense in the real spaces C0 and Lp on the real line or its compact subsets. That is, we consider linear combinations in which all coefficients are 1. As a corollary we deduc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of approximation theory 2023-07, Vol.291, p.105915, Article 105915
1. Verfasser: Shklyaev, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We find sufficient conditions on a function f to ensure that sums of functions of the form f(αx−θ), where α∈A⊂R and θ∈Θ⊂R, are dense in the real spaces C0 and Lp on the real line or its compact subsets. That is, we consider linear combinations in which all coefficients are 1. As a corollary we deduce results on density of sums of functions f(w⋅x−θ), w∈W⊂Rd, θ∈Θ⊂R in C(Rd) in the topology of uniform convergence on compact subsets.
ISSN:0021-9045
1096-0430
DOI:10.1016/j.jat.2023.105915