Bernstein-type constants for approximation of |x|α by partial Fourier–Legendre and Fourier–Chebyshev sums

In this paper, we study the approximation of fα(x)=|x|α,α>0 in L∞[−1,1] by its Fourier–Legendre partial sum Sn(α)(x). We derive the upper and lower bounds of the approximation error in the L∞-norm that are valid uniformly for all n≥n0 for some n0≥1. Such an optimal L∞-estimate requires a judiciou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of approximation theory 2023-07, Vol.291, p.105897, Article 105897
Hauptverfasser: Liu, Wenjie, Wang, Li-Lian, Wu, Boying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the approximation of fα(x)=|x|α,α>0 in L∞[−1,1] by its Fourier–Legendre partial sum Sn(α)(x). We derive the upper and lower bounds of the approximation error in the L∞-norm that are valid uniformly for all n≥n0 for some n0≥1. Such an optimal L∞-estimate requires a judicious summation rule that can recover the lost half order if one uses a naive summation. Consequently, we can obtain the explicit Bernstein-type constant B∞(α)≔limn→∞nα‖fα−Sn(α)‖L∞=2Γ(α)π|sinαπ2|. Interestingly, using a similar argument, we can show that the Fourier–Chebyshev sum has the same Bernstein-type constant B∞(α) as the Legendre case.
ISSN:0021-9045
1096-0430
DOI:10.1016/j.jat.2023.105897