Bernstein-type constants for approximation of |x|α by partial Fourier–Legendre and Fourier–Chebyshev sums
In this paper, we study the approximation of fα(x)=|x|α,α>0 in L∞[−1,1] by its Fourier–Legendre partial sum Sn(α)(x). We derive the upper and lower bounds of the approximation error in the L∞-norm that are valid uniformly for all n≥n0 for some n0≥1. Such an optimal L∞-estimate requires a judiciou...
Gespeichert in:
Veröffentlicht in: | Journal of approximation theory 2023-07, Vol.291, p.105897, Article 105897 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the approximation of fα(x)=|x|α,α>0 in L∞[−1,1] by its Fourier–Legendre partial sum Sn(α)(x). We derive the upper and lower bounds of the approximation error in the L∞-norm that are valid uniformly for all n≥n0 for some n0≥1. Such an optimal L∞-estimate requires a judicious summation rule that can recover the lost half order if one uses a naive summation. Consequently, we can obtain the explicit Bernstein-type constant B∞(α)≔limn→∞nα‖fα−Sn(α)‖L∞=2Γ(α)π|sinαπ2|. Interestingly, using a similar argument, we can show that the Fourier–Chebyshev sum has the same Bernstein-type constant B∞(α) as the Legendre case. |
---|---|
ISSN: | 0021-9045 1096-0430 |
DOI: | 10.1016/j.jat.2023.105897 |