A simple upper bound for Lebesgue constants associated with Leja points on the real line
Let K⊂R be a regular compact set and let g(z)=gC¯∖K(z,∞) be the Green function for C¯∖K with pole at infinity. For δ>0, define G(δ)≔max{g(z):z∈C,dist(z,K)≤2δ}.Let {xn}n=0∞ be a Leja sequence of points of K. Then the uniform norm ‖Tn‖=Λn,n=1,2,… of the associated interpolation operator Tn, i.e., t...
Gespeichert in:
Veröffentlicht in: | Journal of approximation theory 2022-03, Vol.275, p.105699, Article 105699 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let K⊂R be a regular compact set and let g(z)=gC¯∖K(z,∞) be the Green function for C¯∖K with pole at infinity. For δ>0, define G(δ)≔max{g(z):z∈C,dist(z,K)≤2δ}.Let {xn}n=0∞ be a Leja sequence of points of K. Then the uniform norm ‖Tn‖=Λn,n=1,2,… of the associated interpolation operator Tn, i.e., the nth Lebesgue constant, is bounded from above by minδ>02ndiam(K)δenG(δ)9/8.In particular, when K is a uniformly perfect subset of R, the Lebesgue constants grow at most polynomially in n.
To the best of our knowledge, the result is new even when K is a finite union of intervals. |
---|---|
ISSN: | 0021-9045 1096-0430 |
DOI: | 10.1016/j.jat.2022.105699 |