An asymptotic holomorphic boundary problem on arbitrary open sets in Riemann surfaces
We show that if U is an arbitrary open subset of a Riemann surface and φ an arbitrary continuous function on the boundary ∂U, then there exists a holomorphic function φ˜ on U such that, for every p∈∂U, φ˜(x)→φ(p), as x→p outside a set of density 0 at p relative to U. These “solutions to a boundary p...
Gespeichert in:
Veröffentlicht in: | Journal of approximation theory 2020-09, Vol.257, p.105451, Article 105451 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that if U is an arbitrary open subset of a Riemann surface and φ an arbitrary continuous function on the boundary ∂U, then there exists a holomorphic function φ˜ on U such that, for every p∈∂U, φ˜(x)→φ(p), as x→p outside a set of density 0 at p relative to U. These “solutions to a boundary problem” are not unique. In fact they can be required to have interpolating properties and also to assume all complex values near every boundary point. Our result is new even for the unit disc. |
---|---|
ISSN: | 0021-9045 1096-0430 |
DOI: | 10.1016/j.jat.2020.105451 |