Diosgenin production from Dioscorea zingiberensis tubers by novel pressurized hydrolysis in acidic ionic liquids

Diosgenin (25R-spirost-en-3β-ol; CAS No.: 512–04–9), a plant-derived natural product, has significant importance for manufacturing steroid-based drugs. It is primarily prepared by direct acid hydrolysis, but this out-of-date process is not environmentally friendly. In recent decades, ionic liquids h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied research on medicinal and aromatic plants 2024-12, Vol.43, p.100596, Article 100596
Hauptverfasser: Xia, Guohua, Dai, Yangguang, Zhou, Jinwei, Zhang, Mingjing, Wang, Minjun, Yang, Huan, Shen, Yuping, Yang, Pengfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diosgenin (25R-spirost-en-3β-ol; CAS No.: 512–04–9), a plant-derived natural product, has significant importance for manufacturing steroid-based drugs. It is primarily prepared by direct acid hydrolysis, but this out-of-date process is not environmentally friendly. In recent decades, ionic liquids have shown good potential to replace conventional organic solvents in many fields. The aim of this study was to develop a novel approach for diosgenin production, in which the acidic ionic liquid [BHSO3MIm]HSO4 was employed under pressurised conditions to hydrolyse the crude saponin of Dioscorea zingiberensis C. H. Wright tubers for the first time. The hydrolysis conditions were optimised through a one-factor-at-a-time experiment, and the maximum yield of diosgenin was achieved at 3.71 ± 0.18 % with an ionic liquid concentration of 0.5 M, a solid–liquid ratio of 1:30 g/mL, a hydrolysis temperature of 140°C, and a hydrolysis duration of 0.5 h. The diosgenin yield was 75.67 % of the maximum yield after six consecutive applications of [BHSO3MIm]HSO4. The yield achieved was comparable to pressurised acid hydrolysis and microwave-assisted ionic liquid hydrolysis and significantly higher than that of direct acid hydrolysis (P
ISSN:2214-7861
2214-7861
DOI:10.1016/j.jarmap.2024.100596