Nickel doping: Improving the optical properties of carbon dots and increasing the sensitivity for detecting pH and water

pH and water play a crucial role in chemical, environmental and physiological monitoring processes, so it is of great importance to establish a simple and sensitive multi-mode detection method. In this study, we fabricated nickel-doped carbon dots (Ni-CDs) by a hydrothermal method using nickel chlor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2024-03, Vol.976, p.173131, Article 173131
Hauptverfasser: Zhang, Li, Hao, Yumin, Liu, Yang, Dong, Yueping, Chen, Zexian, Dong, Wenjuan, Zhao, Zhonghua, Hu, Qin, Dong, Chuan, Gong, Xiaojuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:pH and water play a crucial role in chemical, environmental and physiological monitoring processes, so it is of great importance to establish a simple and sensitive multi-mode detection method. In this study, we fabricated nickel-doped carbon dots (Ni-CDs) by a hydrothermal method using nickel chloride (NiCl2•6 H2O) and m-phenylenediamine (m-PDA) as precursors, which exhibits excellent photostability, outstanding resistance to photobleaching and ultra-low cytotoxicity. Ni doping increased the fluorescence quantum yield (from 21.4% to 30.3%) and H content (from 44.4% to 57.1%) of the Ni-CDs, making them highly sensitive to pH and water, which facilitated the detection of pH and water based on deprotonation and aggregation mechanisms, respectively. Ni-CDs can detect pH in the ranges of 6.0–9.0 and 6.0–11.0 via fluorometric and smartphone methods, respectively. The limits of detection (LODs) of the Ni-CDs in DMSO, DMF and THF for the detection of water were 0.0112%, 0.0144% and 0.0060%, respectively. Moreover, the Ni-CDs have been effectively utilized for pH detection in real samples as well as for pH in cells and zebrafish with satisfactory results. More importantly, the Ni-CDs/hydrogel remains perfectly the sensitive to pH and water, broadening the applications of the CDs in sensing, bioimaging and information encryption. [Display omitted] •Ni doping makes the Ni-CDs more sensitive to pH and water.•Smartphone and fluorescent dual-mode sensors were established to detect pH and water.•Ni-CDs-based pH sensor performs well in cellular and zebrafish imaging.•Ni-CDs-based hydrogels have excellent performance in information encryption.
ISSN:0925-8388
1873-4669
DOI:10.1016/j.jallcom.2023.173131