2D platinum telluride as SERS substrate: Unique layer-dependent Raman enhanced effect
Two-dimensional (2D) materials have drawn ever-increasing interest for the application of surface-enhanced Raman scattering (SERS) because of their low-cost synthesis, non-toxic characteristics, flat surface and outstanding optical properties. The unique thickness-dependent SERS of 2D materials is i...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2023-03, Vol.937, p.168294, Article 168294 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two-dimensional (2D) materials have drawn ever-increasing interest for the application of surface-enhanced Raman scattering (SERS) because of their low-cost synthesis, non-toxic characteristics, flat surface and outstanding optical properties. The unique thickness-dependent SERS of 2D materials is intriguing, however, the underlying mechanism of this phenomenon is not fully understood. In this work, the few-layer platinum telluride (PtTe2), an emerging 2D type-II Dirac semimetal with strong interlayer interaction, is explored as a potential SERS substrate. The Raman enhancement on 2D PtTe2 is confirmed experimentally to be originated from the predominant charge transfer mechanism. The unique thickness-dependent SERS effect reveals that four-layer (4 L) PtTe2 exhibits the strongest Raman intensity of probe molecule Rhodamine 6 G (R6G). Combined with the theoretical investigation by density functional theory (DFT), the ultrasensitive SERS effect of 4 L PtTe2 is found to be attributed to its high density of states (DOS) near the Fermi level and strongest built-in electric field at the interface of molecule/PtTe2. R6G, crystal violet (CV) and rhodamine B (RhB) on 4 L PtTe2 all reach a detection limit as low as 10−10 M. The uniformity, stability and photobleaching effect of PtTe2 as SERS substrate is also studied. Our findings reveal that the charge transfer between molecule and 2D materials is a complex process that is influenced by multiple factors, which might deepen our understanding of the unique chemical mechanism (CM) of SERS in 2D materials.
[Display omitted]
•Two-dimensional PtTe2 used as SERS substrate exhibits unique thickness-dependent Raman enhancement for R6G.•4 L-PtTe2 exhibits detection of limit as low as 10−10 M for R6G, CV and RhB.•The thickness-dependent Raman enhancement is attributed to the built-in electric field at the interface of R6G/PtTe2. |
---|---|
ISSN: | 0925-8388 1873-4669 |
DOI: | 10.1016/j.jallcom.2022.168294 |