Mechanism of hydrogen modification of titanium-dioxide

Recent explanations of the enhancement of the electrical properties of hydrogen-modified anatase-TiO2 propose mid-band gap states just below the conduction band and relate these to the creation of a disordered surface layer on an unmodified crystalline core. In this paper, the focus is on hydrogen m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2020-01, Vol.815, p.152249, Article 152249
Hauptverfasser: Rahimi, Nazanin, Pax, Randolph A., MacA. Gray, Evan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent explanations of the enhancement of the electrical properties of hydrogen-modified anatase-TiO2 propose mid-band gap states just below the conduction band and relate these to the creation of a disordered surface layer on an unmodified crystalline core. In this paper, the focus is on hydrogen modification of rutile-TiO2, which also acquires enhanced electrical properties. Oxygen-deficient TiO2–x was produced by exposing rutile to hydrogen at temperatures up to 730 °C. The desorption of hydrogen was studied by mass spectrometry measurements at temperatures up to 730 °C. All the evidence gathered in this new study is consistent with the absorption of hydrogen into the interior of the rutile particle. Re-examination of published x-ray diffraction results does not reveal evidence for a disordered surface layer on hydrogen-modified rutile. It therefore appears that the explanation of enhanced electrical properties owing to surface-only processes is incomplete, especially for rutile, but probably for anatase as well.
ISSN:0925-8388
1873-4669
DOI:10.1016/j.jallcom.2019.152249