Middle Eocene to early Oligocene biostratigraphy in the SW Neo-Tethys (Tunisia): Large-scale correlations using calcareous nannofossil events and paleoceanographic implications
We integrate previous Bayesian and astronomically tuned age calibrations of the calcareous nannofossils events with our large-scale correlations to discuss using the standard calcareous nannofossil zonal schemes in the SW Neo-Tethys platform during a period of significant paleoceanographic, tectonic...
Gespeichert in:
Veröffentlicht in: | Journal of African earth sciences (1994) 2023-02, Vol.198, p.104805, Article 104805 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We integrate previous Bayesian and astronomically tuned age calibrations of the calcareous nannofossils events with our large-scale correlations to discuss using the standard calcareous nannofossil zonal schemes in the SW Neo-Tethys platform during a period of significant paleoceanographic, tectonic, and paleoclimatic perturbations (middle Eocene to early Oligocene). Two marine on-land sections extend from NP15 (Nanno-Plankton zone) to lower NP23, equivalent to upper CNE9 (Calcareous Nannofossil of the Eocene) to lower CNO3 (Calcareous Nannofossil of the Oligocene), are studied.
Calcareous nannofossils have been investigated at less than 96 kyr resolution between 45.55 Ma and 31.9 Ma. The Souar section covers the Top (T) of the Nannotetrina alata group zone (CNE9, Lutetian) to the Isthmolithus recurvus zone (CNE18, Priabonian) in the Pelagic facies of the Tunisian dorsal. The El Rahma section extends from the Helicosphaera compacta zone (CNE21) to the Reticulofenestra umbilicus (CNO2) zone in the Cap Bon peninsula. The distribution patterns were studied through semi-quantitative counts to test the reliability of the biohorizons used in the standard biozonations schemes (Martini, 1971; Agnini et al., 2014). We discuss 14 biohorizons that span 13.65 Myr to highlight the limitations (absence/scarcity) of the Chiasmolithus group, particularly Ch. grandis, Ch. oamaruensis, and Ch. solitus, as biohorizons in the SW Neo-Tethys. Our study shows that Sphenolithus furcatolithoides, Dictyococcites bisectus, Sphenolithus obtusus, and Reticulofenestra erbae are reliable horizons for large-scale correlations with the northern margins of the Neo-Tethys. Calcareous nannofossils from the SW Neo-Tethys margin were highly affected by the paleo-circulation changes due to the episodic restriction of the westward subtropical Eocene Neo-Tethys (STENT) current (Jovane et al., 2009), followed by the closure of the eastern Neo-Tethys.
•Calcareous nannofossil biostratigraphy at time resolution below 96 kyr.•Correlation of calcareous nannofossils events between the SW Neo-Tethys and Northern Neo-Tethys (Italy and Turkey).•Reliability of 14 early Paleogene biohorizons between 45.55 Ma to 31.9 Ma.•Sphenolithus furcatolithoides and Sphenolithus obtusus are reliable horizons for correlations with the northern Neo-Tethys.•Chiasmolithus grandis, Ch. oamaruensis, and Ch. solitus are diachronous and inconsistent in the SW Neo-Tethys. |
---|---|
ISSN: | 1464-343X |
DOI: | 10.1016/j.jafrearsci.2022.104805 |