Investigation of thermal transport mechanism of silicone-modified phenolic matrix nanocomposites with different pyrolysis degrees

Polymeric nanocomposites with low thermal conductivity show promising applications for next-generation thermal protection materials used in re-entry vehicles due to their lightweight, high char yield, and excellent ablation-oxidation resistance. However, the thermal conductivity of polymeric nanocom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of analytical and applied pyrolysis 2024-10, Vol.183, p.106793, Article 106793
Hauptverfasser: Xiao, Jie, Fang, Guodong, Qin, Xiaoqiang, Wang, Bing, Hong, Changqing, Meng, Songhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polymeric nanocomposites with low thermal conductivity show promising applications for next-generation thermal protection materials used in re-entry vehicles due to their lightweight, high char yield, and excellent ablation-oxidation resistance. However, the thermal conductivity of polymeric nanocomposites varies with the pyrolysis degree of the polymer matrix in aerodynamic environments, which significantly affects thermal protection and structural applications but is challenging to identify experimentally. Herein, non-equilibrium molecular dynamics simulations combined with experiments were implemented to determine the dependence of thermal conductivities on pyrolysis degree and microstructures for polymeric nanocomposites. We further explore the thermal transport mechanism through various contributions to the morphology. The results show that the thermal conductivity of the polymer matrix can be increased by a factor of 4.44 (from 0.27 W/m/K to 1.47 W/m/K) as the pyrolysis degree increases from 0 to 100%, and the thermal conductivity depends nonlinearly on the pyrolysis degree and temperature. Molecular dynamics simulations found that the side chains of the polymer matrix are rapidly scissored with the increasing pyrolysis degrees, and the structural ordering of the residual solids containing sp2 hybridization is enhanced, exhibiting graphene-like microtopological features, which reduces phonon scattering and makes thermal transport more efficient. This work provides insight into the linkage between the thermal transport properties and the pyrolysis degree of polymeric nanocomposites, which is valuable for improving the thermal transport performance and modeling ablation response for polymeric nanocomposites. [Display omitted] •The work studies the pyrolysis dependence of the thermal conductivity.•Nonequilibrium molecular dynamics simulations calculate the thermal conductivity.•Thermal conductivity increases nonlinearly with the pyrolysis degree.•Increased backbone ordering reduces phonon scattering and improves heat transport.
ISSN:0165-2370
DOI:10.1016/j.jaap.2024.106793