Personalized fashion outfit generation with user coordination preference learning
This paper focuses on personalized outfit generation, aiming to generate compatible fashion outfits catering to given users. Personalized recommendation by generating outfits of compatible items is an emerging task in the recommendation community with great commercial value but less explored. The ta...
Gespeichert in:
Veröffentlicht in: | Information processing & management 2023-09, Vol.60 (5), p.103434, Article 103434 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper focuses on personalized outfit generation, aiming to generate compatible fashion outfits catering to given users. Personalized recommendation by generating outfits of compatible items is an emerging task in the recommendation community with great commercial value but less explored. The task requires to explore both user-outfit personalization and outfit compatibility, any of which is challenging due to the huge learning space resulted from large number of items, users, and possible outfit options. To specify the user preference on outfits and regulate the outfit compatibility modeling, we propose to incorporate coordination knowledge in fashion. Inspired by the fact that users might have coordination preference in terms of category combination, we first define category combinations as templates and propose to model user-template relationship to capture users’ coordination preferences. Moreover, since a small number of templates can cover the majority of fashion outfits, leveraging templates is also promising to guide the outfit generation process. In this paper, we propose Template-guided Outfit Generation (TOG) framework, which unifies the learning of user-template interaction, user–item interaction and outfit compatibility modeling. The personal preference modeling and outfit generation are organically blended together in our problem formulation, and therefore can be achieved simultaneously. Furthermore, we propose new evaluation protocols to evaluate different models from both the personalization and compatibility perspectives. Extensive experiments on two public datasets have demonstrated that the proposed TOG can achieve preferable performance in both evaluation perspectives, namely outperforming the most competitive baseline BGN by 7.8% and 10.3% in terms of personalization precision on iFashion and Polyvore datasets, respectively, and improving the compatibility of the generated outfits by over 2%.
•It works on recommending new, rather than pre-defined, outfits for individual users.•Novel formulation for personalized outfit generation task with better performance.•A new TOG framework organically integrates personalization & compatibility modeling.•Generate outfits by learning category-level coordination preferences from user data.•A new strategy for compatibility evaluation, enhancing recommendation evaluation. |
---|---|
ISSN: | 0306-4573 1873-5371 |
DOI: | 10.1016/j.ipm.2023.103434 |