Satisfying the restricted isometry property with the optimal number of rows and slightly less randomness

A matrix Φ∈RQ×N satisfies the restricted isometry property if ‖Φx‖22 is approximately equal to ‖x‖22 for all k-sparse vectors x. We give a construction of RIP matrices with the optimal Q=O(klog⁡(N/k)) rows using O(klog⁡(N/k)log⁡(k)) bits of randomness. The main technical ingredient is an extension o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 2025-03, Vol.189, p.106553, Article 106553
1. Verfasser: Rao, Shravas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A matrix Φ∈RQ×N satisfies the restricted isometry property if ‖Φx‖22 is approximately equal to ‖x‖22 for all k-sparse vectors x. We give a construction of RIP matrices with the optimal Q=O(klog⁡(N/k)) rows using O(klog⁡(N/k)log⁡(k)) bits of randomness. The main technical ingredient is an extension of the Hanson-Wright inequality to ε-biased distributions. •We analyze RIP matrices with the optimal number of rows.•We show that the amount of randomness needed is less than other known constructions.•The proof follows from a generalization of the Hanson-Wright inequality.
ISSN:0020-0190
DOI:10.1016/j.ipl.2024.106553