Satisfying the restricted isometry property with the optimal number of rows and slightly less randomness
A matrix Φ∈RQ×N satisfies the restricted isometry property if ‖Φx‖22 is approximately equal to ‖x‖22 for all k-sparse vectors x. We give a construction of RIP matrices with the optimal Q=O(klog(N/k)) rows using O(klog(N/k)log(k)) bits of randomness. The main technical ingredient is an extension o...
Gespeichert in:
Veröffentlicht in: | Information processing letters 2025-03, Vol.189, p.106553, Article 106553 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A matrix Φ∈RQ×N satisfies the restricted isometry property if ‖Φx‖22 is approximately equal to ‖x‖22 for all k-sparse vectors x. We give a construction of RIP matrices with the optimal Q=O(klog(N/k)) rows using O(klog(N/k)log(k)) bits of randomness. The main technical ingredient is an extension of the Hanson-Wright inequality to ε-biased distributions.
•We analyze RIP matrices with the optimal number of rows.•We show that the amount of randomness needed is less than other known constructions.•The proof follows from a generalization of the Hanson-Wright inequality. |
---|---|
ISSN: | 0020-0190 |
DOI: | 10.1016/j.ipl.2024.106553 |